
Meet ParzivAI:

a medieval chatbot - challenges and
learnings on the road from concept to
prototype
Dr. Florian Nieser (HCDH)
Dr. Thomas Renkert (HSE)

Concept
Basic idea: build a chatbot that can understand and teach Middle High German
(Mittelhochdeutsch) and has extensive knowledge of the Middle Ages.

3 components:

ParzivAI

Engineering: Fine tuning

Curriculum Learning*: from easier tasks to more difficult ones. E.g. shorter and
longer sentences to translate

* Soviany, P., Ionescu, R. T., Rota, P., & Sebe, N. (2022). Curriculum learning: A
survey (arXiv:2101.10382). arXiv. https://doi.org/10.48550/arXiv.2101.10382

Engineering: Datasets
Training on longer conversations / switching tasks

1️⃣

2️⃣

3️⃣

4️⃣

Engineering: Finetuning-Settings

Foundational Model: Command R+

Size: 104 billion parameters

Context: 126k tokens

Supervised Finetuning (SFT)

5 Epochs

4 days, 6 hours runtime

Qlora (Quantized Low-Rank Adaptation)

method with 4-bit quantization

Engineering

1) DiscoLM_German_7B (Mistral-based)

2) Nous-Hermes-2-Mixtral-8x7B

3) Command-r (35B)

4) Llama3 (70B), Mixtral 8x22B
Jeong, S., Baek, J., Cho, S., Hwang, S. J., & Park, J. C. (2024). Adaptive-
rag: Learning to adapt retrieval-augmented large language models
through question complexity (arXiv:2403.14403). arXiv.
https://doi.org/10.48550/arXiv.2403.14403

Can we fine tune model on a new language
not in the original training set and without
modifying the tokenizer?

Engineering: RAG Components

the system chooses the best source of information, either from the vector store or

the web, to provide the most relevant answers to the user's query.

Engineering: Structure of the code
Initialization: Embedding model, vector store, search engine API

Data Processing: Load URLs, scrape content, and convert to vectors – same process

for PDFs using the embedding model

Retrieval: Primarily retrieve knowledge from the vector store based on user input to

answer the question – fallback is a web search with citation of the web search

Evaluation and Routing: Document relevance is checked based on retrievals and

evaluated by the finetuned LLM; subsequently routing and answer generation

Interaction: The generated answer is delivered to the user with information about the

source of the answers via Streamlit – prompts, information sources, embeddings,

history, and possibly feedback are stored

Features: Image search in an art catalog via individual URL, Feedback, quiz, PoS

Engineering: Adaptive RAG

source: https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_adaptive_rag/

Problem 1: good and fast embeddings

Problem 3: reranking and
routing

Problem 5: image search (no API, real-time web scraping)

Problem 2: fast vectorstore

Problem 4: web search with sources
LLM fallback

—> etymology databases (wiktionary API, mhdbdb (http://mhdbdb.sbg.ac.at/) API)

—> image search

LLM used as embedder, grader, reranker, generator.
Different system prompts.

Engineering: RAG Components

Ensuring that the system provides the most relevant information to the user's

query by evaluating the documents retrieved from the vector store or web

search.

Next steps
● Extend tokenizer?
● Train Mixture-of-Experts model on different skill sets (teacher, translator..)
● Build evaluation set and let different models compete
● Inference Server to run evals and Betatest with Feedback
● Visualisations of Data retrievals
● Sustainability of the code and optimization
● Identification of more suitbale foundational models
● Adaption and testing for broader applications, different disciplines and

usecases

	Folie 1
	Folie 2: Concept
	Folie 3: ParzivAI
	Folie 4: Engineering: Fine tuning
	Folie 5: Engineering: Datasets
	Folie 6: Engineering: Finetuning-Settings
	Folie 7: Engineering
	Folie 8: Engineering: RAG Components
	Folie 9: Engineering: Structure of the code
	Folie 10: Engineering: Adaptive RAG
	Folie 11: Engineering: RAG Components
	Folie 12: Next steps

