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Concept
Basic idea: build a chatbot that can understand and teach Middle High German 
(Mittelhochdeutsch) and has extensive knowledge of the Middle Ages. 

3 components:



ParzivAI 



Engineering: Fine tuning

Curriculum Learning*: from easier tasks to more difficult ones. E.g. shorter  and 
longer sentences to translate  

* Soviany, P., Ionescu, R. T., Rota, P., & Sebe, N. (2022). Curriculum learning: A 
survey (arXiv:2101.10382). arXiv. https://doi.org/10.48550/arXiv.2101.10382



Engineering: Datasets
Training on longer conversations / switching tasks
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Engineering: Finetuning-Settings

Foundational Model: Command R+

Size: 104 billion parameters

Context: 126k tokens

Supervised Finetuning (SFT)

5 Epochs

4 days, 6 hours runtime

Qlora (Quantized Low-Rank Adaptation)

method with 4-bit quantization



Engineering

1 ) DiscoLM_German_7B (Mistral-based) 

2) Nous-Hermes-2-Mixtral-8x7B

3) Command-r (35B)

4) Llama3 (70B), Mixtral 8x22B 
Jeong, S., Baek, J., Cho, S., Hwang, S. J., & Park, J. C. (2024). Adaptive-
rag: Learning to adapt retrieval-augmented large language models 
through question complexity (arXiv:2403.14403). arXiv. 
https://doi.org/10.48550/arXiv.2403.14403

Can we fine tune model on a new language 
not in the original training set and without 
modifying the tokenizer?



Engineering: RAG Components

the system chooses the best source of information, either from the vector store or 

the web, to provide the most relevant answers to the user's query.



Engineering: Structure of the code
Initialization: Embedding model, vector store, search engine API

Data Processing: Load URLs, scrape content, and convert to vectors – same process 

for PDFs using the embedding model

Retrieval: Primarily retrieve knowledge from the vector store based on user input to 

answer the question – fallback is a web search with citation of the web search

Evaluation and Routing: Document relevance is checked based on retrievals and 

evaluated by the finetuned LLM; subsequently routing and answer generation

Interaction: The generated answer is delivered to the user with information about the 

source of the answers via Streamlit – prompts, information sources, embeddings, 

history, and possibly feedback are stored

Features: Image search in an art catalog via individual URL, Feedback, quiz, PoS



Engineering: Adaptive RAG

source: https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_adaptive_rag/

Problem 1: good and fast embeddings

Problem 3: reranking and 
routing

Problem 5: image search (no API, real-time web scraping)

Problem 2: fast vectorstore

Problem 4: web search with sources
LLM fallback

—> etymology databases (wiktionary API, mhdbdb (http://mhdbdb.sbg.ac.at/) API)

—> image search

LLM used as embedder, grader, reranker, generator.
Different system prompts. 



Engineering: RAG Components

Ensuring that the system provides the most relevant information to the user's 

query by evaluating the documents retrieved from the vector store or web 

search.



Next steps
● Extend tokenizer?
● Train Mixture-of-Experts model on different skill sets (teacher, translator..)
● Build evaluation set and let different models compete
● Inference Server to run evals and Betatest with Feedback
● Visualisations of Data retrievals
● Sustainability of the code and optimization
● Identification of more suitbale foundational models
● Adaption and testing for broader applications, different disciplines and 

usecases
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